The Voice of 5G & LTE for the Americas

Select a Language: Spanish | Portuguese

Nokia and MediaTek achieve world first with Carrier Aggregation delivering 3.2 Gbps end user speeds

Nokia Media Release | October 6, 2021

Nokia and MediaTek achieve world first with Carrier Aggregation delivering 3.2 Gbps end-user speeds  

  • Successful validation test achieves first 3 Component Carriers sub-6GHz carrier aggregation combining FDD and TDD spectrum; Utilizes Nokia’s AirScale 5G Standalone Carrier Aggregation solution with commercial hardware and software
  • The test combined 210MHz of spectrum from three component carriers to achieve 3.2Gbps downlink speeds

6 October 2021

Espoo, Finland – Nokia and MediaTek today announced that they have achieved a world’s first by successfully aggregating 5G Standalone (5G SA) spectrum using 3 Components Carrier (3CC) aggregation. This increases the sub-6Ghz 5G spectrum utilization by combining 210MHz of FDD and TDD spectrum more efficiently to reach 3.2Gbps peak downlink throughput. The move will enable communication service providers to deliver higher throughputs and better coverage to more customers.

To achieve this performance, Nokia supplied its latest AirScale equipment including its AirScale 5G SA architecture powered by its energy-efficient ReefShark System-on-Chip (SoC) technology as well as its cloud-native 5G core. MediaTek provided its new M80 5G modem which combines mmWave and sub-6 GHz capabilities onto a single chip as well as the user equipment testing platform.

Carrier Aggregation combines frequency bands for higher rates and increased coverage, delivering superior network capacity by maximizing the spectral efficiency of 5G networks. Frequency division duplex (FDD) in 600MHz (n71) is a lower frequency band that provides a wide coverage area, improving cell edge performance. Time-division duplex (TDD) in 2600MHz (n41) has higher bandwidth and capacity. The combination of these spectrum bands supports a range of 5G deployment scenarios including indoor as well enhanced outdoor coverage. The high-band sub-6Ghz spectrum bands support high-capacity and extreme mobile broadband capabilities.

JS Pan, General Manager, Wireless Communication System, and Partnerships at MediaTek, said: “This test demonstrates the importance of carrier aggregation in enabling mobile operators around the world to deliver best-in-class speed and capacity to their subscribers. The combination of Nokia’s AirScale portfolio and our technology boosts the possibilities of spectrum assets and 5G networks. We look forward to continuing to partner with Nokia to advance the 5G ecosystem.”

Mark Atkinson, SVP, Radio Access Networks PLM at Nokia, said: “Nokia continues to drive the 5G ecosystem by delivering new and important innovations. This validation test demonstrates how mobile operators can maximize their spectrum allocations and deliver enhanced coverage and capacity to subscribers. Nokia is committed to pushing the boundaries of 5G and delivering industry-leading performance. High-capacity Carrier Aggregation combinations can be achieved in both 5G Standalone (SA) and Non-Standalone (NSA) based on our scalable Airscale Baseband architecture.”

Resources:

Nokia AirScale
Nokia 5G RAN
Nokia 5G Core
Nokia achieves first 5G carrier aggregation call in standalone architecture with Taiwan Mobile
Spectrum Explained

About Nokia
At Nokia, we create technology that helps the world act together.

As a trusted partner for critical networks, we are committed to innovation and technology leadership across mobile, fixed and cloud networks. We create value with intellectual property and long-term research, led by the award-winning Nokia Bell Labs.

Adhering to the highest standards of integrity and security, we help build the capabilities needed for a more productive, sustainable, and inclusive world.

Media Inquiries:
Nokia
Communications
Phone: +358 10 448 4900
Email: press.services@nokia.com

Share this post

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on pinterest
Share on print
Share on email

Sign up to receive our announcements